Spreading of blood drops over dry porous substrate: complete wetting case.
نویسندگان
چکیده
HYPOTHESIS The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. EXPERIMENTS AND THEORY A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. FINDINGS For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data.
منابع مشابه
Initial spreading of low-viscosity drops on partially wetting surfaces.
Liquid drops start spreading directly after coming into contact with a partially wetting substrate. Although this phenomenon involves a three-phase contact line, the spreading motion is very fast. We study the initial spreading dynamics of low-viscosity drops using two complementary methods: molecular dynamics simulations and high-speed imaging. We access previously unexplored length and time s...
متن کاملScaling laws for drop impingement on porous films and papers.
This study investigates drop impingement on highly wetting porous films and papers. Experiments reveal previously unexplored impingement modes on porous surfaces designated as necking, spreading, and jetting. Dimensional analysis yields a nondimensional parameter, denoted the Washburn-Reynolds number, relating droplet kinetic energy and surface energy. The impingement modes correlate with Washb...
متن کاملWetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study.
A three-dimensional lattice Boltzmann method (LBM) has been developed for multiphase (liquid and vapor) flows with solid particles suspended within the liquid phases. The method generalizes our recent two-dimensional model [A. Joshi and Y. Sun, Phys. Rev. E 79, 066703 (2009)] to three dimensions, extends the implicit scheme presented therein to include interparticle forces and introduces an eva...
متن کاملFilling and wetting transitions of nematic liquid crystals on sinusoidal substrates.
Close to sinusoidal substrates, simple fluids may undergo a filling transition, in which the fluid passes from a dry to a filled state, where the interface remains unbent but bound to the substrate. Increasing the surface field, the interface unbinds and a wetting transition occurs. We show that this double-transition sequence may be strongly modified in the case of ordered fluids, such as nema...
متن کاملElectrostatic cloaking of surface structure for dynamic wetting
Dynamic wetting problems are fundamental to understanding the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of colloid and interface science
دوره 446 شماره
صفحات -
تاریخ انتشار 2015